Whitefly Resistance in Tomato

Mohamed Rakha
Vegetable Breeder- Insect resistance
mohamed.rakha@worldveg.org
Question

What is the oldest insect in the world?
The oldest definitive insect fossil, *Rhyniognatha hirsti*, is estimated to be 407 to 396 million years old (comes from near Aberdeen, Scotland)
Outline

I. General introduction: Whitefly damage, host resistance, and challenges

II. Identification of whitefly resistance

 Solanum pimpinellifolium, S. galapagense, and S. lycopersicum var. cerasiforme

III. WorldVeg strategy for whitefly resistance

IV. Identify mechanisms of whitefly resistance

V. WorldVeg breeding programs for whitefly resistance derived from *S. galapagense, and S. pimpinellifolium*
Economic importance

Tomato is the second most important vegetable crop.

Total world production 163.7 million ton with a net value $59.8 billion (FAOSTAT Database, 2017).
Of these, 60% come from Asia (mainly China and India)
Major insect pests of tomato

✓ Feed almost exclusively on foliage
 - Spider mites, dipterous leafminers

✓ Feed on both foliage and fruit
 - Lepidopterans *Helicoverpa zea,*
 Spodoptera exigua, and *Tuta absoluta*

✓ Feed on plant sap
 - Whiteflies
 - Aphids
 - Thrips
Whitefly damage

- Direct damage through feeding
- Indirect damage: transmission of viruses
- Chemical control is difficult
Major resistance sources

- Cultivated tomato: Susceptible
- Wild relatives:

 > 50 years ago!!!

 Solanum pennellii and *S. habrochaites*

 Recently

 S. pimpinellifolium and *S. galapagense*
Challenges of tomato breeding for insect resistance

- **Linkage drag**: Linkage of insect resistance genes with other genes from wild species conditioning poor horticultural traits
- **Polygenic Inheritance**
- **Limited information on markers linked to quantitative trait loci (QTL)** for insect resistance
- **Influence of environment** on insect resistance
- **Insect bioassays (choice and no-choice):**
 - Costly
 - Difficult with large plant populations
 - Labor intensive
Insect bioassays

Choice bioassay: Record numbers of adult, egg, nymph and pupa (3 weeks)

No-choice bioassay: Record numbers of dead and living adult whiteflies and eggs (1 week)
Linkage drag in *S. pennellii*

Cornell tomato lines developed from LA 716
High resistance but almost no fruits!!!

Lin et al. 2014
Breeding strategies

- Develop valid and efficient screening methods
- Identify novel sources of resistance
- Identify mechanisms of insect resistance
- Pyramiding insect-resistant genes
- Combine insect resistance and virus resistance
- Mapping insect resistance genes (phenotypic and metabolomics QTLs)
Identification of whitefly resistance in closely related wild relatives

In total 260 accessions:
11 accessions of *S. cheesmaniae*
18 accessions of *S. galapagense*
231 accessions of *S. pimpinellifolium*

- Trichome analysis
- No-choice bioassay: Record numbers of dead and living adult whiteflies and eggs (1 week)
- Choice bioassay: Record numbers of adult, egg, nymph and pupa (3 weeks)
Means of sweetpotato whitefly resistance parameters and type-trichome density in most resistant accessions compared to susceptible check CL5915 tomato line evaluated in choice bioassays

<table>
<thead>
<tr>
<th>Taxa and AVRDC accessions code</th>
<th>Other codes</th>
<th>Whitefly resistance parameters</th>
<th>Trichomes density/mm2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eggs (no.)</td>
<td>Nymph (no.)</td>
</tr>
<tr>
<td>SOLANUM GALAPAGENSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI063177</td>
<td>LA0530</td>
<td>7.3 f</td>
<td>0.0 d</td>
</tr>
<tr>
<td>VI037239</td>
<td>LA436</td>
<td>7.5 f</td>
<td>0.0 d</td>
</tr>
<tr>
<td>VI063174</td>
<td>LA0438</td>
<td>7.2 f</td>
<td>1.2 d</td>
</tr>
<tr>
<td>VI057400</td>
<td>LA483</td>
<td>13.8 ef</td>
<td>2.5 d</td>
</tr>
<tr>
<td>VI037340</td>
<td>LA1408</td>
<td>14.3 ef</td>
<td>3.2 d</td>
</tr>
<tr>
<td>VI045262</td>
<td>LA1141</td>
<td>18.2 ef</td>
<td>5.7 d</td>
</tr>
<tr>
<td>SOLANUM CHEESMANIENSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI037240</td>
<td>LA483</td>
<td>35.7 def</td>
<td>6.7 d</td>
</tr>
<tr>
<td>SOLANUM PIMPINELLIFOLIUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI030462</td>
<td>PI390519</td>
<td>40.2 cdef</td>
<td>22.7 cd</td>
</tr>
<tr>
<td>SOLANUM LYCOPERICUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL5915 (CH45)</td>
<td></td>
<td>154.8 ab</td>
<td>133.0 a</td>
</tr>
</tbody>
</table>

aType-trichome densities were evaluated in a one mm2 area during choice and no-choice bioassays

$^\gamma$Whitefly adults were counted 3 (3 DWF) and 19 (19 DWF) days after whitefly infestation.

Rakha et al. 2015.
Sweetpotato whitefly resistance parameter means and type-trichome densities in most resistant accessions compared to susceptible check CL5915 tomato line evaluated in no-choice bioassays

<table>
<thead>
<tr>
<th>Taxa and AVRDC accessions code</th>
<th>Other codes</th>
<th>Whitefly resistance parameters</th>
<th>Trichomes density/mm²</th>
<th>Type I</th>
<th>Type IV</th>
<th>Type V</th>
<th>Type VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum galapagense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI037340</td>
<td>LA 1408</td>
<td>100.00 a</td>
<td>21.48 bcde</td>
<td>1.0 a</td>
<td>11.3 bc</td>
<td>0.0 e</td>
<td>1.5 abcd</td>
</tr>
<tr>
<td>VI057400</td>
<td>LA 483</td>
<td>97.50 a</td>
<td>15.75 cde</td>
<td>1.0 a</td>
<td>12.8 abcd</td>
<td>0.0 e</td>
<td>1.5 abcd</td>
</tr>
<tr>
<td>VI063177</td>
<td>LA0530</td>
<td>92.50 a</td>
<td>26.38 bcde</td>
<td>1.0 a</td>
<td>11.8 bc</td>
<td>0.0 e</td>
<td>1.0 bc</td>
</tr>
<tr>
<td>Solanum cheesmaniae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI037245</td>
<td>LA 1036</td>
<td>82.04 abc</td>
<td>79.53 bc</td>
<td>1.0 a</td>
<td>1.5 ef</td>
<td>14.8 bc</td>
<td>1.5 abcd</td>
</tr>
<tr>
<td>VI037240</td>
<td>LA 483</td>
<td>66.90 bcd</td>
<td>32.17 bcde</td>
<td>0.0 c</td>
<td>18.5 ab</td>
<td>0.0 e</td>
<td>0.5 bc</td>
</tr>
<tr>
<td>Solanum pimpinellifolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI030462</td>
<td>PI 390519</td>
<td>93.39 a</td>
<td>4.66 e</td>
<td>1.0 a</td>
<td>19.0 ab</td>
<td>0.0 e</td>
<td>1.3 abcd</td>
</tr>
<tr>
<td>Solanum lycopersicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL5915 (CH45)</td>
<td></td>
<td>6.53 h</td>
<td>86.08 ab</td>
<td>0.5 b</td>
<td>0.0 f</td>
<td>18.4 bc</td>
<td>1.5 abcd</td>
</tr>
</tbody>
</table>

Type-trichome densities were evaluated in a one mm² area during choice and no-choice bioassays as described in Materials and Methods.

Means followed by different letters within columns are different by Duncan’s Multiple Range Test (P=0.05).

Most of these accessions were also resistant to spider mite (Rakha et al., 2016), and *Tuta absoluta* (Plant Breeding, submitted Feb. 2017)
Whitefly resistance in *S. lycopersicum* var. *cerasiforme*

>430 *cerasiforme* accessions were characterized for trichome types and density

We identified one accession with high level of resistance to whiteflies

No-choice bioassay

This accession was also resistant to spider mite and tomato fruitworm!!!
Identify mechanisms of whitefly resistance

The role of trichomes in insect resistance

Physical defense: glandular trichomes might act as a physical barrier, interfering with insect landing, feeding and oviposition

Biochemical defense: glandular trichomes produces some compounds that play a role as repellents/toxic to insect (acyl sugar, methyl ketones, sesquiterpenes and ……?)
Metabolite analyses

Collaboration with:
Plant Research International-
Wageningen UR
Drs. Ric de Vos, Roland Mumm

Targeted chemicals

Acyl sugars: S3 (Triacylsucrose), S4 (Tetracylsucrose), and S5 (Pentaacylsucrose) compounds

Methylketones: 2-tridecanone, 2-dodecanone, and 2-undecanone.

Sesquiterpenes: 7-epizingiberene, α-zingiberene, R-curcumene, γ-curcumene, α-santalene, β-bergamotene, germacrene-B, germacrene-D, β-caryophyllene, α-humulene, β-farnesene, δ-elemene, sesquithujene, β-farnesene and sesquiphellandrene.

Monoterpenes: carene, p-cymene, β-ocimene, α-terpinene, γ-terpinene, α-terpinolene β-myrcene, α-pinene and α-phellandrene.
107 apolar compounds

GCMS analysis

GCMS results, 17122015 to AVRDC.M1 (PCA-X)
Colored according to model terms

- beta-pinene (or sabinene??)
- alpha-pinene
- beta-caryophyllene
- delta-elemene
- alpha-humulene (or Selina-4(15),6-diene?)
- gamma-terpinene
- terpinolene
- alpha-phellandrene
- beta-phellandrene (or limonene???)
- beta-myrcene

R²[1] = 0.467 R²[2] = 0.199
PCA based on 107 GCMS compounds

S. pimpinellifolium
Resistant
Acyl sugar S4:27 (5,5,5,12)
Tomato populations derived from *S. pimpinellifolium* for whitefly resistance

S. Lycopersicum (CLN3682C) × *S. pimpinellifolium*

Female parent: Multiple disease resistance genes (Ty-3, Ty-2, Bwr-12, I2, Mi-1)

Two highly resistant plants (Rakha et al. 2015)

CLN3682C × F₂

F₁ → sib mated

F₂BC₁ → F₁BC₁ → F₃

7 R F₂ plants selected and sib mated

Four plants from controls, parents, F₁, and 172 plant F₂ derived from *S. pimpinellifolium* (VI030462) were phenotyped for whitefly resistance based on no-choice bioassays
Whitefly resistance derived from *S. pimpinellifolium*

Objectives:
- Map whitefly resistance QTL(s) in F2 and F2BC1 populations
- Develop tightly linked markers with whitefly resistance
- Combine whitefly resistance with tomato yellow leaf curl virus resistance genes (*Ty*-2, *Ty*-3)
Phenotypic data (No-choice assay)

Traits were continuously distributed indicating polygenic control.
Type IV trichome data

![Bar graph showing the distribution of Type IV trichome numbers across different intervals.](image)
Tomato populations derived from *S. galapagense*

S. Lycopersicum (CLN3682C) x *S. galapagense*
S. Lycopersicum (CLN3696A) x *S. galapagense*

Female parent:
Multiple disease resistance genes (Ty-3, Ty-2, Bwr-12, I2, Mi-1)

\[\text{F}_1 \]

Si b-mated

\[\text{F}_1 \text{BC}_1 \]
\[\text{F}_1 \text{BC}_2 \]

\[\text{F}_2 \text{BC}_1 \]

Si b-mated

\[\text{F}_3 \]

F1BC1 plants were also backcrossed to the susceptible lines to produce F1BC2.

5 R F2 plants were also backcrossed to the susceptible lines to produce F2BC1.

5 R F2 plants selected and self-pollinated to produce F3.
Big Hairy Tomato!!!

S. galapagense

F1

Fresh-market tomato (F1BC1)

Processing Tomato (F1BC1)

AVRDC, September 2015
Conclusion

- High levels of whitefly resistance were detected in *S. galapagense*, *S. cheesmaniae*, *S. pimpinellifolium*, and *S. lycopersicum* var. *cerasiforme*
- Most whitefly-resistant accessions (*S. galapagense*, *S. cheesmaniae*, *S. pimpinellifolium*) were also found resistant to spider mite, tomato fruitworm and *Tuta absoluta*
- Identified *S. lycopersicum* var. *cerasiforme* accession was also provided broad spectrum insect resistance
- Large variation amongst susceptible and resistant accessions for both acyl sugars (126 compounds) and terpenes (107 compounds)
- *S. pimpinellifolium* (VI030462) separates from all others in both acyl sugar and terpene composition, suggesting the possible presence of different resistance mechanisms in this accession.
- Multiple QTLs associated with whitefly resistance were identified in *S. pimpinellifolium* indicating polygenic control
ACKNOWLEDGMENTS

Tomato group
Dr. Peter Hanson
Ms. Lu, Ms. Grace, Mr. Lim
and Ms. Hsiu-ying

Entomology group
Dr. Srinivasan
Ms. Lin, Mr. Su, Ms. Amy
Ms. Bies (MSc. Student)

Biotechnology group
Dr. Roland
Dr. Shin
Ms. Jean, Ms. Vivian,
Ms. Shu-mei

Plant Research International-Wageningen UR
Dr. Ric de Vos, Dr. Roland Mumm

Funding sources

AVRDC
The World Vegetable Center

Ministry of Science and Technology

BMZ
Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung
THANK YOU